
IJARCCE
 ISSN (Online) 2278-1021

ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 5, Issue 4, April 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.54208 847

Plagiar: Plagiarism Detection using Tool for

Text Document and Source Code

Teja I
1
, Smitha Shekar B

2

M.Tech, IV Sem, Dr. A.I.T., Department of Computer Science& Engg, Bengaluru
1

Associate Professor, Dr. A.I.T., Department of Computer Science& Engg Bengaluru
2

Abstract: Source code written falsification has been a sympathy toward numerous instructors in software engineering

field, given to the simplicity of accessibility of substance in this period of web. The tool built up is an instrument for

identifying written falsification in source codes of understudies learning programming dialects, to take into account the

requirements of educators and help them screen understudies source codes. Right now the instrument underpins Java

Programming Language. The instrument works in three stages. Tokenization took after by N-Gram representation of

source codes and afterward examination utilizing Greedy String Tiling calculation. Reaction time of the device is one

moment for 50 source code records of length 75 lines of code (LOC). According to the exploration, results given by the

instrument are ninety-nine percent right. The goal of this anticipate is to build up a device for distinguishing written

falsification in both the source code and non-specific printed information documents for conquering the downsides of

the current methodologies.

Keywords: Plagiarism, Source Code, Text Document, Tokens, Detection Tool.

I. INTRODUCTION

Unoriginality is the "wrongful assignment" and "taking

and distribution" of another creator's "dialect, musings,

thoughts, or expressions" and the representation of them as

one's own unique work. The thought stays hazardous with

hazy definitions and vague standards. Written falsification

is viewed as scholastic unscrupulousness and a break of

journalistic morals. It is liable to assents like punishments,

suspension, and even ejection. As of late, instances of

'great counterfeiting' have been distinguished in the

scholarly world.

Written falsification is viewed as scholastic deceitfulness

and a break of journalistic morals. It is liable to

authorizations like punishments, suspension, and even

ejection. As of late, instances of 'great written falsification'

have been recognized in the educated community.

Literary theft is not in itself a wrongdoing, but rather can

constitute copyright encroachment. In the scholarly world

and industry, it is a genuine moral offense. Literary theft

and copyright encroachment cover to an impressive

degree, yet they are not equal ideas, and numerous sorts of

counterfeiting don't constitute copyright encroachment,

which is characterized by copyright law and might be

arbitrated by courts. Counterfeiting is not characterized or

rebuffed by law, but instead by foundations (counting

proficient affiliations, instructive establishments, and

business substances, for example, distributed

organizations).

Types of Source Code Plagiarism

Literary Similarity: Two codes are said to be literarily

comparable if the words, variables in the source codes are

comparable.

1. Sort 1: This type has one code that is a duplicate of

another code aside from changes in space, line dispersing.

2. Sort 2: Same as sort 1 aside from changes to variable

names, capacity names.

3. Sort 3: Some lines are added to or expelled from the

code which has been replicated, which does not hold any

significance.

Utilitarian Similarity: Two codes are said to be

practically comparative in the event that they are utilizing

the same semantics or performing the same activity.

Because of predetermined number of educators, as the

quantity of understudies builds it turns out to be more

troublesome and tedious for the instructors to physically

distinguish literary theft. The manual assessment many–a–

times has a tendency to be shallow as the instructor

generally just performs an output of the code, and does not

check all angles.

Given to the expanding number of understudies,

contrasting every source code record and all others to

discover literary theft is an exceptionally bulky

assignment. Say, in the event that we have around 200

understudies experiencing a programming test, for all

intents and purposes it's impractical for an instructor to

look at which understudy replicated which part of the

project from the other, physically. Indeed, even after strict

manual checking probability of hints of written

falsification still perseveres. To let take educators a moan

of alleviation we have thought of a device for

consequently recognizing source code copyright

infringement, "Plagiar".

There are for the most part two methodologies utilized as a

part of copyright infringement recognition instruments:

IJARCCE
 ISSN (Online) 2278-1021

ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 5, Issue 4, April 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.54208 848

1. Trait Based

2. Structure Based

In trait construct approach the center is with respect to

specific properties of the system like number of lines,

number of words, and number of characters. Two

documents with same succession of these properties are

viewed as a possibility for written falsification. In

structure construct approach the center is in light of

structure of the project. The system is initially tokenized

and after that tokens are looked at utilizing Greedy String

Tiling calculation. The entire center of this paper from

now onwards would be on identifying source code literary

theft as it is the necessity of our venture "Plagiar".

Underneath to sum things up the outline and usage of our

apparatus is talked about.

II. RELATED WORK

A writing overview is done to highlight a few thoughts

and contentions in the field of learning. The work done in

this is to examine the theme of interest and to comprehend

the different methods, methodologies and difficulties

confronted in it. A portion of the literary theft techniques

[1] and designs utilized as a part of the reports, source

codes or some other archives are examined and talked

about here. The copyright infringement examples or

events influences the way the counterfeiting discovery

procedures can be composed and actualized. Taking after

are a percentage of the papers utilized for writing review.

Salha M. Alzahrani.et al (2012) [4], Plagiarism can be of

various natures, running from replicating writings to

receiving thoughts, without offering credit to its originator.

This paper displays another scientific categorization of

literary theft that highlights contrasts between exacting

copyright infringement and savvy written falsification,

from the liar's behavioral perspective. LifangHan.et al

(2010) [3], Plagiarism essentially happens as duplicate

and-glue of the code, supplanting the name of capacities or

variables, reordering the grouping of the announcement,

sort redefinition, et cetera. At present, there are three

homologous programming discovery innovation strategies

available: content based closeness location, token-based

comparability recognition and punctuation structure-based

similitude identification. Ahmed Hamza Osman.et al

(2013) [5], this paper talks about another unoriginality

location technique for content reports called Tree-based

Conceptual Matching. The proposed technique not just

speaks to the substance of a content report as a tree;

however it likewise caught the fundamental semantic

significance as far as the connections among its ideas. The

strategy was embraced to distinguish copyright

infringement in content archives. The tree-based assumed

a critical part in this strategy. It took a gander at the

measure of identifying appropriated sentences from the

first records. [2] Nousheen Samuel.et al (2010), some of

the literary theft recognition instruments work just as a

standalone apparatuses, some of them are hardcoded into

college wide learning administration frameworks. XML

based dialect for depiction of literary theft recognition

results will serve asa light-weight mix stage that permits

written falsification location instruments to be effectively

incorporated with existing learning administration

frameworks or college gateways. Norman Meuschke.et

al(2014) [6], This paper proposes a half breed way to deal

with literary theft identification in scholarly reports that

coordinates discovery techniques utilizing references,

semantic contention structure, and semantic word likeness

with character-based strategies to accomplish a higher

recognition execution for masked counterfeiting frames.

At present accessible programming for unoriginality

identification only performs content string correlations.

These frameworks discover duplicates, yet neglect to

recognize camouflaged copyright infringement, for

example, rewords, interpretations, or thought literary theft.

Some of the plagiarism methods [1] and patterns used in

the documents, source codes or any other documents are

studied and discussed here. The plagiarism patterns or

occurrences affect the way the plagiarism detection

techniques can be designed and implemented. Following

are some of the papers used for literature survey.

Salha M. Alzahrani.et al (2012) [4], Plagiarism can be of

many different natures, ranging from copying texts to

adopting ideas, without giving credit to its originator. This

paper presents a new taxonomy of plagiarism that

highlights differences between literal plagiarism and

intelligent plagiarism, from the plagiarist’s behavioural

point of view. LifangHan.et al (2010) [3], Plagiarism

mainly happens as copy-and-paste of the code, replacing

the name of functions or variables, reordering the

sequence of the statement, type redefinition, and so on. At

present, there are three homologous software detection

technology methods on the market: text-based similarity

detection, token-based similarity detection and syntax

structure-based similarity detection. Ahmed Hamza

Osman.et al (2013) [5], This paper discusses a new

plagiarism detection method for text documents called

Tree-based Conceptual Matching. The proposed method

not only represents the content of a text document as a

tree, but it also captured the underlying semantic meaning

in terms of the relationships among its concepts. The

method was adopted to detect plagiarism in text

documents. The tree-based played a very important role in

this method. It looked at the amount of detecting

plagiarized sentences from the original documents.

Nousheen Samuel.et al (2010)[2], Some of the plagiarism

detection tools work only as a standalone tools, some of

them are hardcoded into university-wide learning

management systems. XML based language for

description of plagiarism detection results will serve a sa

light-weight integration platform that allows plagiarism

detection tools to be easily integrated with existing

learning management systems or university portals.

Norman Meuschke.et al(2014) [6], This paper proposes a

hybrid approach to plagiarism detection in academic

documents that integrates detection methods using

citations, semantic argument structure, and semantic word

similarity with character-based methods to achieve a

higher detection performance for disguised plagiarism

forms. Currently available software for plagiarism

detection exclusively performs text string comparisons.

IJARCCE
 ISSN (Online) 2278-1021

ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 5, Issue 4, April 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.54208 849

These systems find copies, but fail to identify disguised

plagiarism, such as paraphrases, or idea plagiarism.

III. ARCHITECTURE

Plagiar is an online grading tool for programming

languages. It is available on the web for easy access. An

organization can also use Plagiar for checking scholars

programming capabilities.

A. Plagiar Approach

The tool has utilized Structure based methodology, in the

same way as other Plagiarism discovery devices talked

about above, wherein a group of documents or catalogs

needs the source code to be as a matter of first importance

tokenized. The procedure of Tokenization is clarified

quickly in outline and execution some portion of this

paper. It's extremely key for any written falsification

indicator instrument to be extendible, as in any course,

learning one dialect is not adequate considering the

opposition and evolving innovations. So Plagiarism

locator ought to have the capacity to include another

dialect for copyright infringement recognition as and when

required. We have fused this element in our instrument.

New dialects can be included effectively without critical

changes in code, so making our device extendible. This

device offers extendibility; you simply need to present the

arrangement of watchwords of the dialect you need to

include.

Achieve capacity is another critical angle for any

apparatus, as though it's not reachable then its ease of use

will likewise be less. The instrument is sent on web, as a

"Plagiar" so achieve capacity is not an issue. Educators

can sign in, whenever, from any terminal which has web

on it. The terminals with least setup can likewise get the

outcomes, as yield is only a html page. No additional

establishment of any product is required. The interface is

likewise exceptionally easy to understand, instructor

simply needs to choose the records, utilizing check boxes,

which he/she supposes are copied and can see the

outcomes inside a moment or something like that. The

yield is a rundown of documents with a rate of

coordinating code in them. Additionally there is a catch to

see coordinating code. As educator snaps on the catch, the

two documents with coordinating codes are indicated one

next to the other. The coordinating codes are spoken to

with various hues. A tick on one side of coordinating code

brings the comparative code on other side in core interest.

A preview of the yield is appeared in figure 3 underneath.

This gives ease in looking at the outcomes. The educator

doesn't need to hold up much to get the outcomes; our

instrument offers an incredible reaction time, inside one

moment the outcomes can be seen for a cluster of source

code documents. That spares time and disappointment, of

the instructor, and finds the broken understudies.

B. Design and Implementation

The engineering configuration of our apparatus comprises

of a web interface, where records to be checked for written

falsification are chosen and results are shown. At that

point comes Tokenization and Comparison. Tokenization

is dialect subordinate stage and examination autonomous.

Tokenizer handles all alone parsing of various dialect

source codes. Tokenized source code documents are

thought about for literary theft in comparator. Fig. 1

demonstrates the design of Plagiar Plagiarism finder. It has

three modules. Web-Interface is the thing that the client

sees when he gives a solicitation for recognizing copyright

infringement. The solicitation gets sent to Tokenizer

which tokenizes the source codes. At that point the yield

of Tokenizer is bolstered to comparator and it's here the

source codes are examined for similitudes.The Figure 1

shows the architecture diagram of the tool.

Figure 1: Architecture Diagram

1) Tokenization
Tokenization is the process of converting source code into

a sequence of tokens which can then be compared against

another token sequence. Tokenization is done in 3 steps

(a) First convert the codes into a lexeme format

(b) Translate into tokens

(c) Change tokens into an appropriate number.

As far as plagiarism detector tool used by Plagiar is

concerned we have divided the whole source code into

tokens of type

• Header files

• Keywords

• Identifiers

• Operators

• Numerals

e.g.

#include<stdio.h>

#include<conio.h>

void main()

{

 printf(―Plagiar Software‖);

}

2) Algorithm Rabin Greedy-String Tiling
Definition: A maximal-match is where a substring Pp of

the pattern string starting at p, matches, element by

element, a substring Tt of the text string starting at t. The

match is assumed to be as long as possible, i.e until a non-

match or end-of-string is encountered, or until one of the

elements is found to be marked. (Marking will be

discussed presently.) Maximal-matches are temporary and

possibly not unique associations, i.e. a substring involved

in one maximal-match may form part of several other

maximal-matches.

Definition: A tile is a permanent and unique (one-to-one)

association of a substring from P with a matching

Web
Interface

TokenizerComparator

IJARCCE
 ISSN (Online) 2278-1021

ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 5, Issue 4, April 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.54208 850

substring from T. In the process of forming a tile from a

maximal-match, tokens of the two substrings are marked,

and thereby become unavailable for further matches. With

the definitions of tiles and maximal-matches in place it is

worth noting that in many situations isolated, short

maximal-matches can be ignored.

Definition: A minimum-match-length is defined such that

maximal-matches (and hence tiles) below this length are

ignored. The minimum-match-length can be 1, but in

general will be an integer greater than 1.

The Rabin greedy string tiling algorithm pseudo code is

given below

Step 1: starting with the top queue, while there is a non-

empty queue do if the current queue is empty then drop to

next queue

/* corresponding to smaller maximal-matches */

Step 2: else remove match(p, t, L) from queue

 /* Assume the length of maximal-matches in the current

queue is L */

Step 3: if match not occluded then

Step 4: if for all j: 0 . . . s − 1, Pp + j =Tt + j then

/* IE match is not hash artefact */

Step 5: for j:= 0 to L - 1 do

Step 6:mark_token(Pp + j)

Step 7:mark_token(Tt + j)

Step 8: length_of_tokens_tiled := length_of_tokens_tiled

+ L

Step 9: else if L –Loccluded ≥ s then

/* IE the unmarked part remaining of the maximal-match

*/

Step 10: replace unmarked portion on list of queues

IV. TESTING

Plagiar has undergone load testing for a large number of

programs in all languages that it supports. Results have

been quite satisfactory and Response time of our tool is

one minute for 50 source code files of length 75 lines of

code (LOC). A snap shot of the output of the ―Plagiar‖ is

shown in the below figures.

The Figure 2 is the snap shot of the Proposed Tool which

is showing the file storing repository where all the files

uploaded by the user is stored.

Figure 2: Repository of the Portal

The Figure 3 shows the snapshot of the report generated

by the tool which clearly shows the percentage of

Figure 3: Plagiarism Report

Figure 4: Plagiarism File Comparison

The figure 4 is going to show the snapshot of file

comparison after the plagiarism is checked. The files show

the content matching in the snapshot.

V. CONCLUSION

In today’s world there are many plagiarism Tools

available in market. We have tried to make our tool better

by overcoming certain flaws in these tools. In ―Plagiar‖

their case sensitivity while matching the text documents.

In this tool tokenization technique is used for both source

code matching and text document matching, at present

plagiar tool is implemented only java platform, if required

it can be extended more languages like C#, C, C++ etc.

REFERENCES

[1]. Jurriaan Hage, ―Plagiarism detection for Java: a tool comparison‖

Utrecht University, TB Utrecht, The Netherlands

[2]. Nousheen Samuel, Naima Samuel, Sergey Butakov ―XML Based

Format for exchange of Plagiarism Detection Results‖ SolBridge
International School of Business Woosong University Daejeon,

South Korea. IEEE 978-1-4244-5943-8/10 ©2010.

[3]. Lifang Han, Baojing Cui, Jianxin Wang, YongleHao ‖Type
Redifinition Plagirism Detection of tocken-Based Comparison‖,

International Conference on Multimedia Information Networking

and Security 2010.
[4]. Salha M. Alzahrani, Naomie Salim, and Ajith Abraham‖

Understanding Plagiarism Linguistic Patterns,Textual Features, and

Detection Methods‖ IEEE Transactions On Systems, Man, And
Cybernetics—Part C: Applications And Reviews, Vol. 42, No. 2,

March 2012.

[5]. Ahmed Hamza Osman1, Naomie Salim2 and Ammar Ahmed
E.Elhadi ―A Tree-based Conceptual Matching For Plagiarism

Detection‖, International Conference On Computing, Electrical

And Electronic Engineering (ICCEEE) 2013.
[6]. Norman Meuschke, Bela Gipp ―Reducing Computational Effort for

Plagiarism Detection by using Citation Characteristics to Limit

Retrieval Space‖ IEEE 2014.

